Comprehensive detection of analytes in large chromatographic datasets by coupling factor analysis with a decision tree

نویسندگان

چکیده

Abstract. Environmental samples typically contain hundreds or thousands of unique organic compounds, and even minor components may provide valuable insight into their sources transformations. To understand atmospheric processes, individual are frequently identified quantified using gas chromatography–mass spectrometry. However, due to the complexity variable nature such data, data reduction is a significant bottleneck in analysis. Consequently, only subset known analytes often reported for dataset, large amounts potentially useful discarded. We present an automated approach cataloging identifying all chromatographic dataset demonstrate utility our analysis ambient aerosols. use coupled factor analysis–decision tree deconvolute peaks comprehensively catalog nearly dataset. Positive matrix factorization (PMF) small subsections multiple chromatograms applied extract factors that represent profiles mass spectra potential analytes, which detected. A decision based on peak parameters (e.g., location, width, height), relative ratios those parameters, shape, noise, retention time, spectrum discard erroneous combine determined same analyte. With approach, within section chromatogram cataloged, process repeated overlapping sections across chromatogram, generating complete list times estimated validate this compounds separation poorly resolved with similar resolution appear fraction chromatograms. As case study, method complex real-world composition particles, more than 1100 resolved, corresponding information along cataloged.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CLOUDS: A Decision Tree Classifier for Large Datasets

Classification for very large datasets has many practical applications in data mining. Techniques such as discretization and dataset sampling can be used to scale up decision tree classifiers to large datasets. Unfortunately, both of these techniques can cause a significant loss in accuracy. We present a novel decision tree classifier called CLOUDS, which samples the splitting points for numeri...

متن کامل

a swot analysis of the english program of a bilingual school in iran

با توجه به جایگاه زبان انگلیسی به عنوان زبانی بین المللی و با در نظر گرفتن این واقعیت که دولت ها و مسئولان آموزش و پرورش در سراسر جهان در حال حاضر احساس نیاز به ایجاد موقعیتی برای کودکان جهت یاد گیری زبان انگلیسی درسنین پایین در مدارس دو زبانه می کنند، تحقیق حاضر با استفاده از مدل swot (قوت ها، ضعف ها، فرصتها و تهدیدها) سعی در ارزیابی مدرسه ای دو زبانه در ایران را دارد. جهت انجام این تحقیق در م...

15 صفحه اول

Analysis of large social datasets by community detection

Using a database of research projects of the European 6th Framework Programme, we present a methodology to analyze large social data sets based on a new community detection algorithm. As a main advantage, we stress that community determination makes easier the operation of crossing relational data (who is connected to whom) with particular information about each person or organization. PACS. PA...

متن کامل

Fault Detection and Location in DC Microgrids by Recurrent Neural Networks and Decision Tree Classifier

Microgrids have played an important role in distribution networks during recent years.  DC microgrids are very popular among researchers because of their benefits. Protection is one of the significant challenges in the way of microgrids progress. As a result, in this paper, a fault detection and location scheme for DC microgrids is proposed. Due to advances in Artificial Intelligence (AI) and s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Atmospheric Measurement Techniques

سال: 2022

ISSN: ['1867-1381', '1867-8548']

DOI: https://doi.org/10.5194/amt-15-5061-2022